566 research outputs found

    Effective, Comfortable, and Sustainable Railway Systems: Decision Models for Optimal Asset Management and Scenarios Analysis

    Get PDF
    Millions of passengers worldwide rely on a fast, competitive, and reliable transit system for daily transportation. The American infrastructure report card 2017 assigned a level “D-” to the USA’s transit sector that means “poor” condition. The Canadian report card in 2016 assigned a grade of “Fair” to fixed assets (e.g. stations and tunnels) of the transport system; this indicates that such assets “require attention”. Meanwhile, 25% of such fixed assets were ranked in poor and very poor condition. In periods of 2016 – 2018, the Société de Transport de Montréal (STM) has invested the amount of C$2.2 billion, or 78% of its total capital expenditure for metro system maintenance and upgrading. Extensive deterioration of already aged metro systems in North America complicates managing the network while coping with the increased demand and the corresponding need to plan for capital upgrades with a restricted annual budget. Effective planning to rehabilitate existing assets and expand new ones while respecting constraints is key to the success of transit-oriented strategies. However, without a comprehensive multi-criteria decision-making procedure, it is impossible to achieve the optimal actions at the right time within the given budget. The main objective of this research is to develop a comprehensive model for managing urban railways, such as the metro, that supports strategic decisions to maintain the highest level of convenience, safety, comfort and reliability in the metropolitan area. To overcome the gaps found in the literature, these proposed steps should be used: Step I: Developing an understanding of convenience with special concentration on the level of service from the passenger’s perspective. The idea is to model, quantitatively and practically, aspects relevant to the user convenience for transit vehicle’s comfort. Step II: Development of a decision-making model to mimic the operation of the transit systems capturing indirect impacts such as human development and sustainability. Step III: Development of an optimization model to analyze investment scenarios for the upgrade and expansion of the railway network, while up-keeping the existing operation at acceptable levels of service, guiding policies, and respecting budget limitation. This includes the relationships between the transit system and human development issues, addressing fighting poverty; supporting accessibility to health, education and job centers; and encouraging the modal shift away from the automobiles. The proposed models could also be used by public transit systems such as Tramway, Bus Rapid Transit (BRT), Light Rail Transit (LRT), traditional buses and metro to guide planning for their maintenance, upgrade and expansion to achieve higher levels of convenience and reliability encouraging transit ridership

    Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure

    Get PDF
    In this thesis a risk-based decision support system to schedule the predictive maintenance activities, is proposed. The model deals with the maintenance planning of a railway infrastructure in which the due-dates are defined via failure risk analysis.The novelty of the approach consists of the risk concept introduction in railway maintenance scheduling, according to ISO 55000 guidelines, thus implying that the maintenance priorities are based on asset criticality, determined taking into account the relevant failure probability, related to asset degradation conditions, and the consequent damages

    Advanced finite element modelling of coupled train-track systems : a geotechnical perspective

    Get PDF
    Abstract unavailable please refer to PD

    A risk-informed approach to setting economically-justifiable maintenance strategies for railway tracks

    Get PDF
    The global railway infrastructure is carrying ever increasing amounts of railway and freight traffic which in turn is causing accelerated rates of infrastructure deterioration. Given the pressure to increase track utilization, the ageing infrastructure on which much of the railway transport systems are founded, and the constrained budgets under which the infrastructure is managed, appropriate maintenance needs to be predicted, prioritized, planned and carried out efficiently and economically. This doctoral research aims to develop a means of appraising railway track maintenance strategies economically while taking into account the associated risks and uncertainties. To this end, this research proposes, a Whole Life Cycle Cost Analysis (WLCCA) under uncertainty, while considering the direct and indirect costs of track maintenance, and the benefits to train operation, users, safety and the environment. The developed risk-informed approach is demonstrated via case studies on three different route types within the UK mainline railway network

    Modeling and Monitoring of the Dynamic Response of Railroad Bridges using Wireless Smart Sensors

    Get PDF
    Railroad bridges form an integral part of railway infrastructure in the USA, carrying approximately 40 % of the ton-miles of freight. The US Department of Transportation (DOT) forecasts current rail tonnage to increase up to 88 % by 2035. Within the railway network, a bridge occurs every 1.4 miles of track, on average, making them critical elements. In an effort to accommodate safely the need for increased load carrying capacity, the Federal Railroad Association (FRA) announced a regulation in 2010 that the bridge owners must conduct and report annual inspection of all the bridges. The objective of this research is to develop appropriate modeling and monitoring techniques for railroad bridges toward understanding the dynamic responses under a moving train. To achieve the research objective, the following issues are considered specifically. For modeling, a simple, yet effective, model is developed to capture salient features of the bridge responses under a moving train. A new hybrid model is then proposed, which is a flexible and efficient tool for estimating bridge responses for arbitrary train configurations and speeds. For monitoring, measured field data is used to validate the performance of the numerical model. Further, interpretation of the proposed models showed that those models are efficient tools for predicting response of the bridge, such as fatigue and resonance. Finally, fundamental software, hardware, and algorithm components are developed for providing synchronized sensing for geographically distributed networks, as can be found in railroad bridges. The results of this research successfully demonstrate the potentials of using wirelessly measured data to perform model development and calibration that will lead to better understanding the dynamic responses of railroad bridges and to provide an effective tool for prediction of bridge response for arbitrary train configurations and speeds.National Science Foundation Grant No. CMS-0600433National Science Foundation Grant No. CMMI-0928886National Science Foundation Grant No. OISE-1107526National Science Foundation Grant No. CMMI- 0724172 (NEESR-SD)Federal Railroad Administration BAA 2010-1 projectOpe

    Modelo de apoio à decisão para a manutenção condicionada de equipamentos produtivos

    Get PDF
    Doctoral Thesis for PhD degree in Industrial and Systems EngineeringIntroduction: This thesis describes a methodology to combine Bayesian control chart and CBM (Condition-Based Maintenance) for developing a new integrated model. In maintenance management, it is a challenging task for decision-maker to conduct an appropriate and accurate decision. Proper and well-performed CBM models are beneficial for maintenance decision making. The integration of Bayesian control chart and CBM is considered as an intelligent model and a suitable strategy for forecasting items failures as well as allow providing an effectiveness maintenance cost. CBM models provides lower inventory costs for spare parts, reduces unplanned outage, and minimize the risk of catastrophic failure, avoiding high penalties associated with losses of production or delays, increasing availability. However, CBM models need new aspects and the integration of new type of information in maintenance modeling that can improve the results. Objective: The thesis aims to develop a new methodology based on Bayesian control chart for predicting failures of item incorporating simultaneously two types of data: key quality control measurement and equipment condition parameters. In other words, the project research questions are directed to give the lower maintenance costs for real process control. Method: The mathematical approach carried out in this study for developing an optimal Condition Based Maintenance policy included the Weibull analysis for verifying the Markov property, Delay time concept used for deterioration modeling and PSO and Monte Carlo simulation. These models are used for finding the upper control limit and the interval monitoring that minimizes the (maintenance) cost function. Result: The main contribution of this thesis is that the proposed model performs better than previous models in which the hypothesis of using simultaneously data about condition equipment parameters and quality control measurements improve the effectiveness of integrated model Bayesian control chart for Condition Based Maintenance.Introdução: Esta tese descreve uma metodologia para combinar Bayesian control chart e CBM (Condition- Based Maintenance) para desenvolver um novo modelo integrado. Na gestão da manutenção, é importante que o decisor possa tomar decisões apropriadas e corretas. Modelos CBM bem concebidos serão muito benéficos nas tomadas de decisão sobre manutenção. A integração dos gráficos de controlo Bayesian e CBM é considerada um modelo inteligente e uma estratégica adequada para prever as falhas de componentes bem como produzir um controlo de custos de manutenção. Os modelos CBM conseguem definir custos de inventário mais baixos para as partes de substituição, reduzem interrupções não planeadas e minimizam o risco de falhas catastróficas, evitando elevadas penalizações associadas a perdas de produção ou atrasos, aumentando a disponibilidade. Contudo, os modelos CBM precisam de alterações e a integração de novos tipos de informação na modelação de manutenção que permitam melhorar os resultados.Objetivos: Esta tese pretende desenvolver uma nova metodologia baseada Bayesian control chart para prever as falhas de partes, incorporando dois tipos de dados: medições-chave de controlo de qualidade e parâmetros de condição do equipamento. Por outras palavras, as questões de investigação são direcionadas para diminuir custos de manutenção no processo de controlo.Métodos: Os modelos matemáticos implementados neste estudo para desenvolver uma política ótima de CBM incluíram a análise de Weibull para verificação da propriedade de Markov, conceito de atraso de tempo para a modelação da deterioração, PSO e simulação de Monte Carlo. Estes modelos são usados para encontrar o limite superior de controlo e o intervalo de monotorização para minimizar a função de custos de manutenção.Resultados: A principal contribuição desta tese é que o modelo proposto melhora os resultados dos modelos anteriores, baseando-se na hipótese de que, usando simultaneamente dados dos parâmetros dos equipamentos e medições de controlo de qualidade. Assim obtém-se uma melhoria a eficácia do modelo integrado de Bayesian control chart para a manutenção condicionada

    Transportation noise pollution - Control and abatement

    Get PDF
    Control and abatement of transportation noise pollutio

    Extending Cyber-Physical Systems to Support Stakeholder Decisions Under Resource and User Constraints: Applications to Intelligent Infrastructure and Social Urban Systems

    Full text link
    In recent years, rapid urbanization has imposed greater load demands on physical infrastructure while placing stressors (e.g., pollution, congestion, social inequity) on social systems. Despite these challenges, opportunities are emerging from the unprecedented proliferation of information technologies enabling ubiquitous sensing, cloud computing, and full-scale automation. Together, these advancements enable “intelligent” systems that promise to enhance the operation of the built environment. Even with these advancements, the ability of professionals to “sense for decisions” —data-driven decision processes based on sensed data that have quantifiable returns on investment—remains unrealized for an entire class of problems. In response, this dissertation builds a rigorous foundation enabling stakeholders to use sensor data to inform decisions in two applications: infrastructure asset management and community-engaged decision making. This dissertation aligns sensing strategies with decisions governing infrastructure management by extending the role of reliability methods to quantify system performance. First, the reliability index is used as a scalar measure of the safety (i.e., failure probability) that is extracted from monitoring data to assess structural condition relative to a failure limit state. As an example, long-term data collected from a wireless sensing network (WSN) installed on the Harahan Bridge (Memphis, TN) is used in a reliability framework to track the fatigue life of critical eyebar assemblies. The proposed reliability-based SHM framework is then generalized to formally and more broadly link SHM data with condition ratings (CRs) because inspector-assigned CRs remain the primary starting point for asset management decisions made in practice today. While reliability methods historically quantify safety with respect to a single failure limit state, this work demonstrates that there exist measurable reliability index values associated with “lower” limit states below failure that more richly characterize structural performance and rationally map to CR scales. Consequently, monitoring data can be used to assign CRs based on quantitative information encompassing the measurable damage domain, as opposed to relying on visual inspection. This work reflects the first-ever SHM framework to explicitly map monitoring data to actionable decisions and is validated using a WSN on the Telegraph Road Bridge (TRB) (Monroe, MI). A primary challenge faced by solar-powered WSNs is their stringent energy constraints. For decision-making processes relying on statistical estimation of performance, the utility of data should be considered to optimize the data collection process given these constraints. This dissertation proposes a novel stochastic data collection and transmission policy for WSNs that minimizes the variance of a measured process’ estimated parameters subject to constraints imposed by energy and data buffer sizes, stochastic models of energy and event arrivals, the value of measured data, and temporal death. Numerical results based on one-year of data collected from the TRB illustrate the gains achieved by implementing the optimal policy to obtain response data used to estimate the reliability index. Finally, this dissertation extends the work performed in WSN and sense-for-decision frameworks by exploring their role in community-based decision making. This work poses societal engagement as a necessary entry point to urban sensing efforts because members of under-resourced communities are vulnerable to lack of access to data and information. A novel, low-power WSN architecture is presented that functions as a user-friendly sensing solution that communities can rapidly deploy. Applying this platform, transformative work to “democratize” data is proposed in which members of vulnerable communities collect data and generate insights that inform their decision-making strategies.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162898/1/kaflanig_1.pd
    corecore